Math 115
Spring 2018
Lecture 15

$$
\begin{aligned}
& ? a^{2}+10^{2}=c^{2} ? \\
& y=m a d=r d
\end{aligned}
$$

Class Quiz
(1) Solve by graphing: $\left\{\begin{array}{l}x+y=5 \\ x-y=3\end{array}\right.$
(2) Solve by Substitution method: $\left\{\begin{array}{l}x+3 y=-3 \\ y=4-2 x\end{array}\right.$
(3) Solve by addition/elimination Method: $\left\{\begin{array}{l}x-5 y=-22 \\ 4 x+3 y=4\end{array}\right.$

The sum of two numbers is 12 . 3 times the smaller one increased by the larger one is 20. Find both numbers.
$S \rightarrow$ Smaller one $-1\left\{\begin{array}{l}S+L=12 \\ 3 S+L=20\end{array}\right.$
$L \rightarrow$ Langer one

$$
\frac{\left\{\begin{array}{l}
-S-L=-12 \\
3 S+x=20
\end{array}\right.}{\quad 2 S=8 \rightarrow S=4}
$$

$$
4+L=12 \quad L=8
$$

The numbers are

Two angles are complementary. One of them is twice the other one. find both angles.

$$
\begin{array}{ll}
\left\{\begin{array}{l}
x+y=90 \\
x=2 y
\end{array}\right. & \begin{array}{c}
2 y+y=90 \\
\text { Angles are } \\
3 y=90
\end{array} \\
30^{\circ} \& 60^{\circ} \\
y=30
\end{array}, \begin{aligned}
& x=2(30) \\
& x=60
\end{aligned}
$$

Two angles are Complementary. \rightarrow Total $=90^{\circ}$ The sum of 3 times one of them and 5 times the other one is 400°.
find the larger angle.

$$
\begin{aligned}
& -3\left\{\begin{array} { l }
{ x + y = 9 0 } \\
{ 3 x + 5 y = 4 0 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
-3 x-3 y=-270 \\
3 x+5 y=400
\end{array}\right.\right. \\
& \begin{array}{l}
\text { The larger } \\
\text { angle is } 65^{\circ} \\
\text { and }
\end{array} \quad \begin{array}{r}
2 y=130 \\
y=65 \\
x+65=90
\end{array} \quad x=25
\end{aligned}
$$

Two angles are Supplementary. \rightarrow Total $=180^{\circ}$ Their difference is 20°.
find both angles.

$$
\begin{array}{rr}
\left\{\begin{array}{rr}
x+y=180 & 100+y=180 \\
x-y=20 & y=80
\end{array}\right. \\
2 x=200 & \text { Two angles } \\
x=100 \quad \text { are } 100^{\circ} \& 80^{\circ} .
\end{array}
$$

Two angles are Supplementary \rightarrow Total $=180^{\circ}$ one of them is 15° more than twice the other one.
find both angles.

$$
\left\{\begin{array}{c}
\left\{\begin{aligned}
& x+y=180 \\
& x=2 y+15 \\
& x=2(55)+15 \\
&=110+15 \\
& x=125
\end{aligned}\right.
\end{array}\right.
$$

$$
\begin{array}{rl}
2 y+15+y=180 & x
\end{array}=2(55)+159 \text { } \begin{array}{rl}
2 y=165 & \\
y=55 & x=125
\end{array}
$$

Two angles are 125°.
we need 50 lb . of coffee at $\$ 36 / \mathrm{lb}$. we have unlimited supply of $\$ 30 / \mathrm{lb}$. ह. $\$ 40 \mathrm{lb}$. coffee.
How many pounds of each should we mix
 tc obtain what we need?

Store has two brands of candies. one brand is $\$ 1.60 / \mathrm{lb}$., and other brand is $\$ 1.80 / \mathrm{b}$ The manager needs 100 lb . of candy at $\$ 1.75 \mathrm{ll}$.
How many pounds of each?

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ A + B = 1 0 0 } \\
{ 1 . 6 0 A + 1 . 8 0 B = 1 . 7 5 (1 0 0) }
\end{array} \left\{\begin{array}{l}
A+B=100 \\
1.6 A+1.8 B=175
\end{array}\right.\right. \\
& \therefore\left\{\begin{array} { l }
{ A + B = 1 0 0 - 8 } \\
{ 1 6 A + 1 8 B = 1 7 5 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
A+B=100 \\
8 A+9 B=875
\end{array}\right.\right.
\end{aligned}
$$

John needs 50 liters of 48\% alcohol Solution. He has unlimited supply of two alcohol solution, one at 30% alcohol, and the other one at 60% alcohol.

How many liters of each should he Combine to obtain
 what he needs?

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ x + y = 5 0 } \\
{ . 3 x + . 6 y = . 4 8 (5 0) }
\end{array} \Rightarrow \left\{\begin{array}{l}
x+y=50 \\
.3 x+.6 y=24
\end{array}\right.\right. \\
& \left\{\begin{array} { l }
{ x + y = 5 0 \Rightarrow - 1 0 } \\
{ \therefore 3 + y = 5 0 } \\
{ 3 x + 6 y = 2 4 0 }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ x + 2 y = 8 0 } \\
{ x + 2 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
-x-y=-50 \\
x+2 y=80
\end{array}\right.\right.\right. \\
& \begin{array}{l}
30 \text { of } 60^{\circ} \text {. Alcohol \& 20L of } 30^{\circ} \text {. Alcohol } \\
y=30
\end{array}
\end{aligned}
$$

Graph \sum_{i} Shade

$$
\left\{\begin{array}{l}
x \leq 5 \\
y<\frac{3}{5} x-3
\end{array}\right.
$$

Graph : Shade

$$
\begin{cases}x \geq 0 \quad \text { V.L. } & y \text {-axis } \\ y \geq 0 \quad \text { H.L. } & x \text {-axis } \\ 3 x+4 y<24 \quad 4 y\end{cases}
$$

$$
y<\frac{-3}{4} x+6
$$ form

find eqn of a line that contains $(4,-5)$ and is parallel to $3 x-2 y=-10$.

Same slope

$$
\begin{aligned}
& m=\frac{3}{2} \\
& y=\frac{3}{2} x+5 \\
& \text { Slope-Int } \\
& \begin{array}{l}
y-y_{1}=m\left(x-x_{1}\right) \\
y--5=\frac{3}{2}(x-4) \\
y+5=\frac{3}{2} x-6
\end{array} \rightarrow \begin{array}{l}
y=\frac{3}{2} x-11 \\
2 y=3 x-22 \\
-3 x+2 y=-22
\end{array} \\
& \rightarrow \text { Soint-Slope form } \begin{array}{r}
\text { Standard } \\
\text { form }
\end{array} 3 x-2 y=22
\end{aligned}
$$

find the equation of a line that contains $(-3,6)$ and is perpendicular to to the line $3 x-4 y=12$. Slopes are opposite convert to slope-Int form reciprocal.

$$
-4 y=-3 x+12 \quad y=\frac{3}{4} x-3 \quad-\frac{4}{3}
$$

Now use
Point-slope formula $y-6=\frac{-4}{3}(x+3)$ Point- Slope

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-6=\frac{-4}{3}(x-3)
\end{gathered} \begin{aligned}
& y-6=\frac{-4}{3} x-4 \\
& y=\frac{-4}{3} x+2 \\
& 3 y=-4 x+6 \\
& \text { Slope- } \\
& \begin{array}{c}
4 x+3 y=6 \\
\text { Standard } \\
\text { form }
\end{array}
\end{aligned}
$$

find the egn of a line that contains $(3,-2)$ and $(-1,5)$.

$$
m=\frac{-2-5}{3-(-1)}=\frac{-7}{4} \quad m=\frac{-7}{4}
$$

Point-Slope

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-5=\frac{-7}{4}(x-1) \\
& \frac{\text { Point }}{y-1)} \begin{array}{l}
y-5=\frac{-7}{4}(x+1) \\
- \text { Slope }
\end{array}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
4 y-20=-7(x+1) \\
4 y-20=-7 x-7 \\
7 x+4 y=13 \text { form } \\
4 y=-7 x+13 \\
y=-\frac{7}{4} x+\frac{13}{4} \text { slopender } \\
\text { Int foo }
\end{array}\right.
$$

find eqn of a line that Contains $(-7,5)$ with
(a) Zero slope
(b) no slope
H.L. y-only

$$
\begin{aligned}
& \text { V.L. } x \text {-only } \\
& x=-7
\end{aligned}
$$

(C) undefined slope
(d) Slope $\frac{2}{3}$.
V.L. x-only $x=-7$ $y-y_{1}=m\left(x-x_{1}\right)$

$$
\begin{aligned}
& y-5=\frac{2}{3}(x-7)
\end{aligned}\left\{\begin{array}{l}
3 y-15=2 x+14 \\
-2 x+3 y=29
\end{array}\right.
$$

$y-5=\frac{2}{3}(x+7)$

$f 3 y-15=2(x+7)$ | $-2 x+3 y=29$ |
| :--- |
| $2 x-3 y=-29$ |
| $-3 y=2 x$ |
| format |

Point-slope form

$$
\begin{array}{rl}
-3 y & =-2 x-29 \\
y & =\frac{-2}{-3} x-\frac{29}{-3} \\
\text { Slope -Int } y & y=\frac{2}{3} x+\frac{29}{3}
\end{array}
$$

Use graphing Pase posted on my website for problems 1-10 ε_{1} 47-50
use work pase posted on my website For Problems 11-46.

This is due on Monday
You make Your own Cover Pase I will try to give You a nice folder. Presentation matters.

