$$? a^2 + b^2 = c^2$$
?
 $V = m_{X + b} d = rt$

The Sum of two numbers is 12.

3 times the Smaller one increased by

the larger one is 20.

Find both numbers

S -> Smaller one -1 \ S + L = 12

\[
\begin{align*}
\begin{a

Two angles are Complementary. \uparrow Total = 90°

One of them is twice the other one.

Find both angles.

2y + y = 90 $\chi = 2y$ Angles are $\chi = 2y$ $\chi = 30$ $\chi = 60$

Two angles are Complementary. Total=90°

The Sum of 3 times one of them and

5 times the other one is 400°.

Find the larger angle.

-3(x + y = 90) 3x + 5y = 400The larger

angle is 65°. 2y = 130 2y = 130 3x + 65 = 90 2x + 65 = 90

Two angles are Supplementary. Ptotal=180°

One of them is 15° more than twire

the other one.
$$\chi = 180$$

Sind both angles. $\chi = 24+15$
 $\chi = 25$
 $\chi = 125$

Two angles are $\chi = 125^\circ$

Two angles are $\chi = 125^\circ$

```
Store has two brands of Candies.

one brand is $1.60/1b., and other brand is $1.80/1b.

The manager needs 100 1b. of Candy at

$1.75/1b.

How many Pounds $1.60/1b + $1.80/1b = $1.75/1b

of each?

A + B = 100

B + B = 1750

A + B = 100

B + B = 1750

A + B = 100

B + B = 1750

A + B = 1750

B + B = 1750

A + B = 1750

B + B = 1750

A + B = 1750

B + B = 1750

A + B = 1750

B + 170 brand

A + B = 1750

B = 175
```

John needs 50 liters of 48% alcohol Solution. He has unlimited supply of two alcohol Solution, one at 30% alcohol, and the other one at 60% alcohol.

How many liters of each should he combine to obtain x y 50L what he needs? $\begin{cases}
x + y = 50 \\
3x + 6y = 48(50)
\end{cases}$ $\begin{cases}
x + y = 50 \\
3x + 6y = 240
\end{cases}$ $\begin{cases}
x + y = 50
\end{cases}$ $\begin{cases}
x + y = 5$

Sind eqn of a line that Contains (4,-5) and is parallel to
$$3x-2y=-10$$
.

Same Slope

 $y=3x+5$
 $y=3x+5$
 $y=3x+5$
 $y=3x-11$
 $y=3x-22$
 $y=3x-22$
 $y=3x-22$

Aboint-Slope form

Standard $y=3x-2y=2z$

Form

Find the eqn of a line that contains

$$(3,-2)$$
 and $(-1,5)$.

 $m = \frac{-2-5}{3-(-1)} = \frac{-7}{4}$
 $m = \frac{-3}{3-(-1)} = \frac{-7}{4}$
 $m = \frac{-7}{3-(-1)} = \frac{-7}{4}$
 $m = \frac{-7}{4}$

Sind eqn of a line that Contains (-7,5)

with

② Zero Slope

H.L.
$$y$$
-only

 $x=-1$

③ Undefined Slope

V.L. x -only

 $y-5=\frac{2}{3}(x-1)$
 $y-5=\frac{2}{3}(x+1)$
 $y-5=\frac{2}{3}(x+1)$

Use graphing Pase Posted on my website

for Problems 1-10 & 47-50

Use work pase Posted on my website

Sor Problems 11-46.

This is due on Monday

You make Your own Cover Page

I will try to give You a

nice Folder. Presentation matters.